What's the Difference?
Combinations: Drawing or combination of quantity without order of objects or things. Example: "My fruit cocktail is a combination of mangoes, papayas and bananas". I don't really care what order the fruits are in, they could also be "bananas, papayas and mangoes" or "papayas, mangoes and bananas" etc., its the same fruit cocktail. Permutations: Drawing or combination of quantity with order of objects or things. Example: "The combination to the emergency number is 911". Now I do care about the order. "191" won't work, nor will "119". It has to be exactly 9 -1 -1. Notice: in Mathematics:
Remember Permutation = Position! There are also two types of combinations (remember the order does not matter now):
Formula and different Notations
Here some examples: The oder doesn't matter!!!
The answer:
The answer:
|
Come get it!!!
Alles, was du für deine Ausbildung benötigt
All you need for your education
Tout ce dont t'as besoin pour tes études
Samstag, 25. Oktober 2014
Combinations and Permutations
Montag, 13. Oktober 2014
Brüche Multiplizieren bzw. Dividieren
Aufgabe 7: Multipliziere die gemischten Zahlen.
|
Sonntag, 12. Oktober 2014
Übungen zu Brüche
Aufgabe 1: Trage den unechten Bruch ein.
Aufgabe 2: Trage die gemischte Zahl ein.
Aufgabe 3: Addiere und kürze soweit wie möglich.
Aufgabe 4: Subtrahiere und kürze soweit wie möglich.
Aufgabe 5: Addiere die gemischten Zahlen.
Aufgabe 6: Subtrahiere die gemischten Zahlen.
Lösungen Lösungen3
Lösungen4
Lösungen5
Lösungen6
|
Freitag, 10. Oktober 2014
Brüche addieren bzw. Subtrahieren
Gleichnamige Brüche Addieren bzw. Subtrahieren
Gleichnamige Brüche:
- haben den gleichen Nenner.
- werden miteinander addiert bzw. subtrahiert, indem man die Zähler miteinander addiert bzw. subtrahiert und den Nenner beibehält.
|
|
1
8
|
+ |
3
8
|
= |
1 + 3
8
|
= |
4
8
|
= |
1
2
|
Ungleichnamige Brüche Addieren Subtrahireren
Ungleichnamige Brüche werden in zwei Schritten addiert bzw. Subtrahiert:
- auf den Hauptnenner (Gleicher Nenner) bringen
- und die Zähler miteinander addieren bzw. subtrahiren genauso wie bei Gleichnamige Brüche.
| , |
|
Umwandlung:
Unechte Brüche in gemischte Zahlen - Gemischte Zahlen in Unechte Brüche
Unechter Bruch: Ein unechter Bruch ist ein Bruch, dessen Zähler größer ist als sein Nenner.
|
Gemischte Zahl: Eine gemischte Zahl besteht aus einer ganzen Zahl und einem Bruch.
|
Unechte Brüche in gemischte Zahlen umwandeln
Gegeben: |
|
17 : 5 = 3, Rest = 2
- Das ganzzahlige Ergebnis gibt die Anzahl der Ganzen an;
- Der Rest gibt den Zähler des Restbruches an;
- Der Nenner des Restbruches ist der Nenner der ursprünglichen Bruch.
z.B.: | 3 | 2
5 |
(3 ist das ganzzahlige Ergebnis). |
z.B.: | 3 | 2
5 |
(2 ist der Rest). |
z.B.: | 3 | 2
5 |
(5 ist der Nenner). |
Gemischte Zahlen in Unechte Brüche
Gegeben: |
|
⇒ |
|
zu den Übungen |
Dienstag, 7. Oktober 2014
Sonntag, 5. Oktober 2014
Exercises Coordinate Geometry 1
...
Solution to 5
(a) To show that all four sides are equal in length, we need to calculate their distances (length), using the Distance Formula.
- All for sides are equal in length
- Opposite sides are parallel
but
- The four angles are not right
- The diagonals are not congruent
Therefore, the figure is still a quadrilateral, not a square, but a parallelogram.
Solution to 6
(a) First solve the line eqaution 3x + 4y = 16 for y:
that way you'll come to l1: y = −3/4·x + 4, with the slope m1 = −3/4.
If l2 passes through P and perpendicular to l1, it means that the slope of m2 ist negative reciprocal to the slope of m1
⇒ m1 = −1/m2 ⇔ m2 = −1/m1 = −1/−3/4 = 4/3, m2 = 4/3
l2 passes through P
⇒ 5 = 4/3 − 7 + b, with b to be found!
5 = 28/3 + b and b = −13/3
Therefore, the equation of l2: y = 4/3·x − 13/3
(b) Point of intersection of l1 and l2:
this means l1 = l2
⇒ −3/4·x + 4 = 4/3·x − 13/3, solve for x:
⇒ x = 4
then plot x into either l1 or l2:
⇒ y = −3/4·4 + 4 =
In conclusion, the points l1 and l2 intersect at the point (4, 1)
(c) The perpendicular distance of P from the line l1 represents the Hypotenuse of the slope with the values x = 3 and y = 4
therefore, we will use the Pythagoras formula for right triangle to find out the distance concerned:
so, d² = 3² + 4² | √ (square root it)
⇒ d = √3² + 4² = √5²
⇒ d = 5
Solution to 5
(a) To show that all four sides are equal in length, we need to calculate their distances (length), using the Distance Formula.
d = √(changing in x)² + (changing in y)² d = √(x2 − x1)² + (y2 − y1)² |
- Distance between A(− 3, 2) and B(4, 3) dAB = √(4 − (− 3))² + (3 − 2)² = √7² + 1² = √50 = √2 · 5² = 5√2
- Distance between B(4, 3) and C(9, − 2) dBC = √(9 − 4)² + (− 2 − 3)² = √5² + (−5)² = √50 = √2 · 5² = 5√2
- Distance between C(9, − 2) and D(2, − 3) dCD = √(2 − 9)² + (− 3 − (− 2))² = √(−7)² + (−1)² = √50 = √2 · 5² = 5√2
- Distance between D(2, − 3) and A(− 3, 2) dDA = √(2 − (−3))² + (− 3 − 2)² = √5² + (−5)² = √50 = √2 · 5² = 5√2
- All for sides are equal in length
- Opposite sides are parallel
but
- The four angles are not right
- The diagonals are not congruent
Top ⤴
Solution to 6
(a) First solve the line eqaution 3x + 4y = 16 for y:
that way you'll come to l1: y = −3/4·x + 4, with the slope m1 = −3/4.
If l2 passes through P and perpendicular to l1, it means that the slope of m2 ist negative reciprocal to the slope of m1
⇒ m1 = −1/m2 ⇔ m2 = −1/m1 = −1/−3/4 = 4/3, m2 = 4/3
l2 passes through P
⇒ 5 = 4/3 − 7 + b, with b to be found!
5 = 28/3 + b and b = −13/3
Therefore, the equation of l2: y = 4/3·x − 13/3
(b) Point of intersection of l1 and l2:
this means l1 = l2
⇒ −3/4·x + 4 = 4/3·x − 13/3, solve for x:
⇒ x = 4
then plot x into either l1 or l2:
⇒ y = −3/4·4 + 4 =
In conclusion, the points l1 and l2 intersect at the point (4, 1)
(c) The perpendicular distance of P from the line l1 represents the Hypotenuse of the slope with the values x = 3 and y = 4
therefore, we will use the Pythagoras formula for right triangle to find out the distance concerned:
so, d² = 3² + 4² | √ (square root it)
⇒ d = √3² + 4² = √5²
⇒ d = 5
Top ⤴
continue... |
Freitag, 3. Oktober 2014
Exercises Coordinate Geometry
Solutions |
- y = 4x − 8 meets the x-axis means that y = 0 by solving 4x − 8 = 0, it appears that x = 2
- y = − 2x + 8 meets the y-axis means that x = 0 ⇒ y = − 2(0) + 8 and y = 8
- y = 1/2·x + 6 meets the x-axis means that y = 0 then, y = 1/2·x + 6 = 0 ⇒ x = − 12
⇒ the line meets the x-axis at the point A(2, 0)
We'll now find the equation of the line with gradient 3, passing through the point A
The gradient m = change in y/change in x = 3/1, which means the line passes through another point B(1, 3) with A(2, 0) as origin. (see Plot 1)
The point met is B(0, 8)
The other line passing, with gradient 2 has B as origin. (see Plot 2)
if another line passes through C, its equation should be written y = 2/3·x + 6 (see Plot 3)
The second equation colud the be written: 2/3·x − y + 6 = 0, with a = 2/3, b = −, c = 6.
More exercises |
Abonnieren
Posts (Atom)