Samstag, 15. November 2014

Addition and Subtraction of Fractions


ADDITION and SUBSTRACTION of Like FRACTIONS:

In order to add two or more like fractions, we may follow the two steps below:
  • add or substract the numerators of all fractions;
  • and
  • retain the common denominator of all fractions.

Example: Add or Substract the following like fractions
 i)  
1
6
  +  
4
6
  =  
5
6
 ii)  
2
9
  +  
5
9
  +  
7
9
  =  
14
9
 iii)   2
3
5
  +  
4
5
  +   1
2
5
  =  
(2 × 5) + 3
5
  +  
4
5
  +  
(1 × 5) + 2
5
  =  
24
5
 iv)   1
1
4
  +   2
3
4
  +   7
1
4
  =   (1 + 2 + 7)
1 + 3 + 1
4
  =   10
5
4
 v)  
8
10
  −  
3
10
  =  
 5  1
 10  2
(Dividing the numerator and denominator by their HCF = 5)  = 
1
2
 vi)  
5
12
  −  
7
12
  +  
11
12
  =  
(5 − 7 + 11)
12
 = 
 9  3
 12  4
(HCF = 3)  = 
3
4
 vii)   4
2
3
  +  
1
3
  −   4
1
3
  =  
(4 × 3) + 2
3
  +  
1
3
  −  
(4 × 3) + 1
3
  =  
2
3



ADDITION and SUBSTRACTION of Unlike FRACTIONS:

To add or substract unlike fractions, we need to:
  • firstly convert them into corresponding equivalent like fractions
  • by Finding the LCM of the denominators;
    and
  • secondly follow the same steps as in Like fractions
    • add or sustract the numerators of all fractions;
    • and
    • retain the common denominator of all fractions.

Example: Add or Substract the following unlike fractions

 i)  
2
3
  +  
3
7
  • To find the LCM of 3 and 7, we proceed to the following division:
  •   3   3, 7
      7   1, 7
      21   1, 1
  • As you can see, 3 × 7 = 21 is the LCM of 3 and 7.
    Since 21 can be divided by both 3 and 7: 21 ÷ 3 = 7 and 21 ÷ 7 = 3.

Now we can convert the given fractions into equivalent fractions with denominator 21 as follow:
2
3
  +  
3
7
  =  
7 × 2
7 × 3
  +  
3 × 3
3 × 7
  =  
14
21
  +  
9
21
  =  
23
21
  =   1
2
21


 ii)  
1
6
  +  
3
8
  • To find the LCM of 6 and 8, we proceed to the following division:
  •   2   6, 8
      2   3, 4
      2   3, 2
      3   3, 1
         1, 1
  • As you can see, 2 × 2 × 2 × 3= 24 is the LCM of 6 and 8.
    Since 24 can be divided by both 6 and 8: 24 ÷ 6 = 4 and 24 ÷ 8 = 3.

Now we can convert the given fractions into equivalent fractions with denominator 24 as follow:
1
6
  +  
3
8
  =  
4 × 1
4 × 6
  +  
3 × 3
3 × 8
  =  
4
24
  +  
9
24
  =  
13
24



 iii)   4
2
3
  −   3
1
4
  +   2
1
6
  =  
(4 × 3) +2
3
  −  
(3 × 4) + 1
4
  +  
(2 × 6) + 1
6


=  

14
3

  −  

13
4

  +  

13
6


Let's first find the LCM 0f 3, 4 and 6:
  2   3, 4, 6
  2   3, 2, 3
  3   3, 1, 3
     1, 1, 1
  As you can see, 2 × 2 × 3 = 12 is the LCM of 3, 4 and 6.
  For, 12 can be divided by 3, 4 and 6: 12 ÷ 3 = 4, 12 ÷ 4 = 3 and 12 ÷ 6 = 2.

Now let's convert the given fractions into equivalent fractions with denominator 12 as follow:

14
3
  −  
13
4
  +  
13
6
 =  
4 × 14
4 × 3
  −  
3 × 13
3 × 4
  +  
2 × 13
2 × 6
 =  
56
12
  −  
39
12
  +  
26
12
=
43
12
 =    3
7
12



 iv)  
15
16
  −  
17
24
,   The LCM of 16 and 24 is: 2 × 2 × 2 × 2 × 3 = 48, (see table)  
  2   8, 12
  2   4, 6
  3   2, 3
  3   1, 3
     1, 1

The fractions are now converted into equivalent fractions with like denominators, 48:
 ↔ 
15
16
  −  
17
24
 = 
3 × 15
3 × 16
  −  
2 × 17
2 × 24
 = 
45
48
  −  
34
48
 = 
11
48







◄◄Fractions Core Lessons


TOP

Keine Kommentare:

Kommentar veröffentlichen