- Crosses the x-axis means x-intercept when y = 0
y = 2 − |
18
2x + 3
|
⇒ when y = 0 |
0 = |
4x + 6 − 18
2x + 3
|
- Crosses the y-axis means y-intercept when x = 0
y = 2 − |
18
2x + 3
|
⇒ when x = 0 |
- The normal to the curve is Perpendicular (⊥) to it, we need the derivative to find its gradient.
m1 = y' | = 0 − |
0(2x + 3) − 2(18)
(2x + 3)²
|
at the point A(3, 0), we have: m1 = |
36
(2·3 + 3)²
|
= |
36
81
|
= |
4
9
|
⇔ |
m1 = |
4
9
|
. |
AC ⊥ y ⇒ m1·m2 = − 1,
m2 = |
− 1
m1
|
= |
− 1
4/9
|
= |
− 9
4
|
The gradient of the line AC is: |
m2 = |
− 9
4
|
- Equation of the line AC
Per definition the equation of a line is: y = mx + b
m = m2, we need b.
at the point A(3,0), 0 = |
− 9
4
|
· 3 + b ⇒ b = |
27
4
|
Therefore, y = |
− 9
4
|
·x + |
27
4
|
9x + 4y = |
27 |
⇒ True! |
The line crosses C when x = 0 (intercept y)
9·0 + 4y = 27
4y = 27
- The length of BC.
d = √ [(xb + xc)² + (yb + yc)²]
= |
√ [(0)² + ( − 4 + |
27
4
|
)²] |
= |
43
4
|
⇒ |
BC = 10.75cm (or units) |
|
|
|
Keine Kommentare:
Kommentar veröffentlichen