Donnerstag, 26. März 2015

SEQUENCES AND SERIES - EXERCISES

Exercises

  1. Write down the first four terms in ascending power of x of the binomials expansion of

  2. (a)  (1 + 3x)12
        
    (b)  (1 − 2x)9
    (c)  (2 − x)10
        
    (d)  (1 −
    x
    3
    )20
        
    Answers
    (e)  (2 −
    3
    2x
    )7
        
    (f)  (
    3
    2
    + 2x)9

  3. The sum of the nth terms of a progression is given by Sn where Sn = n(3n − 4). Show that the progression is an AP.
  4.     Answer


  5. The sum of the nth terms of an AP is Sn where Sn = n² − 3n. Write down the fourth term and the nth term.
  6.     Answer





Answers to i
  1. Notice: To solve these problems, we can use Pascal's Triangle, but that needs a lot of time! An alternative way is to use the Binomial Theorem, which offers a quicker method for expanding any complex binomial series. Only and only when the power n is a positive integer. see (a + b)n

    (a) (1 + 3x)12
         = 12c0·112·(3x)0 + 12c1·111·(3x)1 + 12c2·110·(3x)2 + 12c3·19·(3x)3 + ... + (3x)12      = 1 + 36x + 594x² + 5940x3 + ... + 531441x12

    (b) (1 − 2x)9
         = 9c0·19·(−2x)0 + 9c1·18·(−2x)1 + 9c2·17·(−2x)2 + 9c3·16·(−2x)3 + ... + (−2x)9      = 1 − 18x + 144x² − 672x3 + ... − 512x9

    (c) (2 − x)10
         = 10c0·110·(−x)0 + 10c1·19·(−x)1 + 10c2·18·(−x)2 + 10c3·17·(−x)3 + ... + (−x)10      = 1024 − 5120x + 11520x² − 15360x3 + ... + x10

    (d) (1 −
    x
    3
    )20
         = 20c0·120·(−x/3)0 + 20c1·119·(−x/3)1 + 20c2·118·(−x/3)2 + 20c3·117·(−x/3)3 + ... +
         = 1 − 20x/3 + 190x²/91140x3/27 + ... + x20/320
    (e) (2 −
    3
    2x
    )7
         = 7c0·27·(−3/2x)0 + 7c1·26·(−3/2x)1 + 7c2·25·(−3/2x)2 + 7c3·24·(−3/2x)3 + ... + ...      = 128 − 672/x + 1512/1890/x3 + ... + ...

    (f) (
    3
    2
    + 2x)9
         = 9c0·(3/2)9·(2x)0 + 9c1·(3/2)8·(2x)1 + 9c2·(3/2)7·(2x)2 + 9c3·(3/2)6·(2x)3 + ... +      = (3/2)9 + (310/27)x + (39/8)x² + (7·(37)/2)x3 + ... + ...


    Answer to ii

  2. the first nth terms are given by an = Sn − Sn−1
    an = n(3n − 4) − (n − 1) [3(n − 1) − 4]
    = 3n² − 4n − (n − 1) (3n − 7)
    = 3n² − 4n − 3n² + 10n − 7)
    an = 6n − 7, therefore, we can find out:
          a1 = 6·1 − 7 = − 1 +6
          a2 = 6·2 − 7 = 5 +6
          a3 = 6·3 − 7 = 11 +6
          a4 = 6·4 − 7 = 17 +6
          ...      ...      ...
          ...      ...      ...
          an = 6·n − 7

          and the sequence is: − 1, 5, 11, 17, 23,...,

    As you can see, the common difference d = 6.

    By replacing a1 and an in the AP's general formula, we should obtain
    Sn = n(3n − 4), which is the proof that Sn is an AP progression.

    By replacing a1 and an in the AP's general formula, we should obtain
    Sn = n(3n − 4), which is the proof that Sn is an AP progression.

    Sn =
    n(a1 + an)
    2
    =
    n(−1 + 6n − 7)
    2
    =
    2n(3n − 4)
    2
    Sn = n(3n − 4), the progression is an AP.


    Answer to ii

  3. * The nth term is given by: an = Sn − Sn−1
    an = n² − 3n − [(n−1)² − 3(n−1)]
    = n² − 3n − (n² − 5n + 4)
    = − 3n − + 5n − 4
    an = 2n − 4

    * The 4th term a4 = 4

  1. Find the first three terms in the expansion of (1 + b)5.
    Use the substitution x = 1 + b, to find the coefficient of in the expansion
    of (1 + b − 2b²)5.
  2. Answer ⤵
    Close ⤴



  3. The coefficient of and in the expansion of (a + b)6 are equal.
    Find the value of a.





Keine Kommentare:

Kommentar veröffentlichen