Donnerstag, 11. September 2014

Solutions to Exercises on Vertex

  1. Find (i) the vertex and (ii) the equation of the line of symetry of each of the following quadratic graphs.

    1. y = 1(x -2)² + 3
      according to the formula, the quadratic equation is in the Vertex form:

      (i) its vertex is v(h, k), with h = -(-2) and k = 3 ==> v(2, 3)
      1 > 0, parabola opens upwards => Minimum

      (ii) its line of symetry is x = 2 (see grah)


    2. The same method can be applied to b., c., d., e. and f.


    3. y = 1(x -3)² + c

      (i) Vertex v(3, c)
      with c undefined constant, it acts like a parameter!!!
      1 > 0, parabola opens upwards => Minimum

      (ii) The line of symetry of the equation is x = c, c can take any value!

    4. y = 1(x -p)² + q

      (i) h = p and k = q ==> vertex v(p, q)
      p, q constant values;
      1 > 0, parabola opens upwards => Minimum

      (ii) Line of symetry x = p, p constant.

    5. y = (ax + b)² + c
      first bring the equation to a vertex form (put a as factor as in the vertex form): ==> y = a(x + b/a) + c (vertex form)

      (i) h = −b/a, k = c, and the vertex: v(−b/a, c), a, b and c constant.
      a > 0, parabola opens upwards => Minimum

      (ii) Line of symetry x = −b/a, a and b constant.

    To the top


  2. Find (i) the least (or, if appropriate, the greatest) value of each of the following quadratic expressions and (ii) the value of x for which this occurs.


  3. Core Lesson

    • Vertex form of a quadratic function: f(x) = a(x - h)² + k.
      • a determines how the parabola opens:
        - a > 0, it opens upwards;
        - a < 0, it opens downwards.
      • h and k are the values of the vertex.
    • The greatest or least value of a quadratic function equals k.
    • The greatest or least value of a quadratic function occurs at x = h.
    • Vertex: v(h, k)

    1. y = 1(x + 2)² - 1
      (x + 2)² - 1 is smallest for x + 2 = 0
      x + 2 = 0 when x = −2
      ==> the function will have its smallest output when x = −2

      so let's find the output now:
      f(-2) = (-2 + 2)² - 1 = (0)² −1 = −1

      So the least value of y = 1(x + 2)² - 1 is k = −1 and it occurs at x = −2, and the parabola opens upwards for a = 1 > 0.

    2. y = 1(x - 1)² + 2
    3. a = 1 > 0, the parabola opens upwards
      ==> its least value is k = 2 and it occurs at x = 1.

    4. y = 5 - 1(x + 3)²
    5. or y = −1(x + 3)² + 5
      a = −1 < 0, the parabola opens downwards
      ==> its greatest value is k = 5 and it occurs at x = −3.

    6. y = 1(2x + 1)² − 7
    7. by factorizing 2: 2(x + 1/2)² − 7
      a = 2 > 0, the parabola opens upwards
      ==> its least value is k = −7 and it occurs at x = −1/2.

    8. y = 3 − 2(x − 4)² or y = − 2(x − 4)² + 3
    9. a = −2 < 0, the parabola opens downwards
      ==> the least value of the function is k = 3 and it occurs at x = 4.

    10. y = 1(x + p)² + q, with p and q constant.
    11. a = 1 > 0, the parabola opens upwards
      ==> the greatest value of the function is k = q and it occurs at x = −p.

    12. y = 1(x − p)² − q, with p and q constant.
    13. a = 1 > 0, the parabola opens upwards
      ==> the greatest value of the function is k = −q and it occurs at x = p.

    14. y = r −1(x − t)² or y = −1(x − t)² + r, with t and r constant.
    15. a = −1 < 0, the parabola opens downwards
      ==> the least value of the function is k = r and it occurs at x = t.

    16. y = c −1(ax + b)² or y = −1(ax + b)² + c, with a, b and c constant.
    17. factorize by a: −a(x + b/a) + c (vertex form)
      −a < 0, the parabola opens downwards
      ==> the least value of the function is k = c and it occurs at x = −b/a.


  4. Solve the following quadratic equations. Leave surds in your answer.

    1. (x − 3)² − 3 = 0   | +3 (on both side)
    2. (x − 3)² = 3   | (square root it)
      x − 3 = ± √3   | +3
      ==> x = 3 ± √3

    3. (x + 2)² − 4 = 0   | +4
    4. (x + 2)² = 4   | (square root it)
      x + 2 = ± 2
      ==> x = − 2 ± √2

    5. 2(x + 3)² = 5   | ÷2
    6. (x + 3)² = 5/2   |
      x + 3 = ± √5/2   | −3
      ==> x = − 3 ± √5/2

    7. (3x − 7)² = 8   |
    8. 3x − 7 = ± √8   | +7
      3x = 7 ± 2√2   | ÷3
      ==> x = 7/3 ± 2√2/3

    9. (x + p)² − q = 0   | +q
    10. (x + p)² = q   |
      x + p = ± √q   | −p
      ==> x = − p ± √q

    11. a(x + b)² − c = 0   | +c
    12. a(x + b)² = c   | ÷a
      (x + b)² = c/a   |
      x + b = ± √c/a   | −b
      ==> x = − b ± √c/a.

    To the top


  5. Express the following in completed square form

    1. x² + 2x +2 (by completing the square)
    2. (x² + 2x + 1) + 2 − 1
      ==> (x + 1)² + 1

    3. x² −8x − 3 (completing the square)
    4. (x² − 8x + 16)² − 3 − 16
      ==> (x − 4)² − 19

    5. x² + 3x − 7 (completing the square)
    6. (x² + 3x + 2.25)² − 7 − 2.25
      ==> (x + 1.5)² − 9.25

    7. 5 − 6x + x², better x² − 6x + 5
    8. (x² − 6x + 9) + 5 − 9
      ==> (x − 3)² − 4 or (x − 3)² − 2²

    9. x² + 14x + 49 (This is a completed square Form)
    10. ==> (x + 7)²

    11. 2x² + 12x − 5   |   ÷2 (divide by 2 to bring the equation to a regular quadratic form)
    12. x² + 6x − 5/2 (complete the square)
      (x² + 6x + 9) − 5/2 − 9
      ==> (x + 3)² − 23/2

    13. 3x² − 12x + 3   |   ÷3
    14. x² − 4x + 1 (complete the square)
      (x² − 4x + 4) + 1 − 4
      ==> (x − 2)² − 3

    15. 7 − 8x − 4x²   |   ÷4
    16. <==> −x − 2x + 7/4   |   ×(−1)
      <==> x + 2x −7/4   |   (complete the square)
      (x² + 2x + 1) −7/4 − 1
      ==> (x + 1) −11/4

    17. 2x² + 5x − 3   |   ÷2
    18. x² + 5/23/2   |   (complete the square)
      (x² + 5/2 + 1.56) − 3/2 − 1.56
      ==> (x + 1.25) − 3.06


  6. Use the completed square form to factorize the following expressions
    1. x² − 2x − 35   |   (complete the square)
    2. (x² − 2x + 1) − 35 − 1
      (x − 1)² − 36 <==> (x − 1)² − 6²   |   (square it)
      ±(x + 1) ± 6
      ==> (x + 1 − 6)(x + 1 + 6)
      ==> (x − 5)(x + 7)

    3. x² − 14x − 176   |   (complete the square)
    4. (x² − 14 + 49) − 176 − 49 <==> (x − 7)² − 225 <==> (x − 7)² − 15²  |  
      ==> (x − 7 + 15)(x − 7 − 15)
      ==> (x + 8)(x − 22)

    5. x² + 6x − 432   |   (complete the square)
    6. (x² + 6x + 9) − 432 − 9 <==> (x + 3)² − 441
      (x + 3)² − 21²   |  
      ==> (x + 3 − 21)(x + 3 + 21)
      ==> (x − 18)(x + 24)

    7. 6x − 5x − 6   |   ÷6
    8. x² − 5x/6 − 1   |   (complete the square)
      (x² − 5x/6 + 0.18) − 1 − 0.18
      (x − 0.42)² − 1.18 <==> (x − 0.42)² − ±1.08   |  
      ==> (x − 0.42 − 1.09)(x − 0.42 + 1.09)
      ==> (x − 1.5)(x + 0.67)

    9. 14 + 45x − 14x² <==> − 14x² + 45x + 14   |   − ÷14
    10. x² − 45x/14 − 1   |   (complete the square)
      (x² − 3.2x + 1.6²) − 1 − 1.6²
      (x − 1.6)² − 3.5 <==> (x − 1.6)² − 1.9²   |  
      ==> (x − 1.6 − 1.9)(x − 1.6 + 1.9)
      ==> (x − 3.5)(x − 0.3)

    11. 12x² + x − 6   |   ÷12
    12. x² − x/121/2  |   (complete the square)
      (x² − x/12 + 0.041²) − 0.5 − 0.041²
      (x − 0.041)² − 0.5 <==> (x − 0.041)² ± 0.7²
      ==> (x − 0.041 − 0.7)(x − 0.041 + 0.7)
      ==> (x − 0.74)(x + 0.66)

  7. See Exercise 2




To the top
Back to Exercises
Back to Lesson

Keine Kommentare:

Kommentar veröffentlichen